High Performance 64-bit HPSC Microprocessor (MPU) New Era of Autonomous Space Computing Nicolas GANRY Senior Product Marketing Manager Microchip Technology Nantes DFTS October 9th, 2024

© 2024 Microchip Technology Inc. and its subsidiaries

Microchip At a Glance

Expanding Microchip Solutions Through Acquisitions

Examples of A&D Focused Acquisitions

Microchip In A&D By The Numbers

60+ Years

of Space Innovation & Heritage

- NASA: Atlas ('57), ISS, Cassini, Rover
- ESA: ATV, Gaia
- Commercial: Globalstar 2, OneWeb, SpaceX

>1000

A&D Customers WW

- Mil: F-35, F-16, AIM9X, Hellfire, Bradley
- Aero: Boeing, Airbus, Bombardier

>40,000

Space Flight Qualified Microchip Processors Shipped

>71,000

Hi-Rel Products For A&D Market >100

#1

Market Share - A&D Semi

\$839M Annual A&D Revenue (FY24)

Microchip components on NASA Perseverance Rover & Ingenuity Helicopter

A&D Product Lines in Europe

Advanced Packaging UK

 Expertise in miniaturisation vs. size, power and reliability

- ADG France
 ✓ Mixed Signal ASIC
 ✓ Processors and Microcontrollers
- ✓ Com interfaces and Memories
- DPM France
 ✓ Power Modules
- DPM Ireland
 ✓ Hi-Reliability Discrete
 ✓ Power Modules
- Vectron Germany
 ✓ Oscillators
 ✓ RF SAW Filters
- RF Microwave UK
 ✓ Amplifiers

BONIC RF

Teltow & Neckarbischofsheim, Germany

Largest Space Semiconductors Portfolio

Microchip Progrietary and Confidential 2024 Microchip Technology Inc. and its subsidiaries

Part of European Space Ecosystem

- Member of different ESA control boards and working groups
- Supported by local agencies CNES, DGA (FR), DLR (GER), UK Govt
- Contributing to European Commission funded programs
- ESCC / DLA Qualified Supply Chain in France, Ireland & Germany (target)

Processing : An Unrivalled Flight Heritage

Colombus 2008

MMS (Nasa) 2014

Proba2 2009

Exomars 2016

JUNO (Nasa) 2011

Solar Obiter 2017

SPOT6 2012

Alphasat 2013

Perseverance 2021

ASBM 2024

Thousands of flight models delivered worldwide

Capella Seguoia Earth Obs 2020

SVOM/Eclair 2013

Mega Constellation LEO Sat -2019

ANGELS Nanosat 2020 MICROCHIP

AT7913

AT697

2018

Evolution of Space Qualified Processors

20 th Century	2000s	2010s	2024
Pre VLSI	32-bit Single-Core	32-bit Multi-Core	64-bit Multi-Core
Custom ISAs	SPAR	C & PowerPC	
Discrete TTL chips "Building out gates of a CPU" <1 MIPS	97F RAD750 MIPS ~400 DMIPS ~1.	GR 740 7K DMIPS ~5.2K DMIPS	Game Changer Needed

At the Same Time... Commercial Processor Advancements

Space Computing Demands a Gamechanger

Face to New Space Challenges

Microchip's Response To Delivering on the Enabling Capabilities: **PIC64-HPSC**

HPSC: Game Changing Space Compute Solution

20 th Cei	ntury		2000s			2010 s		2024	
Pre VLSI		32-l	oit Single-Core		32-bit N	/lulti-Core	64-bit Multi	i-Core	
Custom	ISAs		S	PARC &	Powerl	РС		RISC-V	
Discrete TTL chips			Scalar	Proces	sors		26K DMI	PIC64-HPSC PS, 2 TOP/s, 256	GFLOP/s
"Building out gates of a CPU" <<1 MIPS	AT6 ~80 C	97F OMIPS	RAD750 ~400 DMIPS	GR ~1.7K	740 DMIPS	RAD5545 ~5.2K DMIPS		MICROCHIP DIC BLL DIC BLL	
(Mercury)	(2xEa	rth)	(½ Neptune)	(Ura	nus)	(½ Saturn)		(Jupiter)	
Circles = illus <mark>trated relative scale (area) of DM</mark> IPS performance									

HPSC – Enabling the Next-Generation of Spaceflight

Microchip was awarded a contract by NASA JPL to develop the next-generation High-Performance Spaceflight Computing (HPSC) processor

France Radiation, Qual, Manufacturing

USA Foundry, IP, NASA/JPL Sponsorship

Canada Architecture, Design, Test Management

- High Performance 64-bit Computing
 - Up to 26k DMIPs
 - Virtualization
 - Artificial Intelligence
- TSN Ethernet Integration
 - 240G TSN Ethernet Switch
 - Comprehensive TSN Feature Set
 - Up to 20 ports with speeds from 10M to 10Gbps
- Exceptional Fault-Tolerance
- Defense-Grade Security
- Radiation-Hardened and Radiation-Tolerant

Industry's Highest-Performance Processor for Space \rightarrow EM Devices H1 2025

PIC64 HPSC Builds On Microchip's MCU & FPGA Heritage

PIC64-HPSC Joins Microchip's Expanding Compute Portfolio

Scalable Computing at the Intelligent Edge

Addressing Space Industry Needs with PIC64-HPSC

	General Market MPUs	🐠 HPSC	Traditional Space Processors
High Performance Processing	\checkmark		
Virtualization	\checkmark		
Ethernet up to 10GE	\checkmark		
PCle [©]	\checkmark		
Secure Boot			
SpaceWire		🗸 🔨	\checkmark
Fault Tolerance		✓ //)	\checkmark
Radiation Performance		✓ // //	\checkmark
SEL and SEU Performance		✓ /////	\checkmark
Differentiating Features			
Post-Quantum (ML-KEM, ML-DSA)		✓	
TSN Ethernet Switching		✓	
RDMA / RoCEv2			

Bridging the Gap between Commercial General Market MPUs & Space Processors

Feature Highlights

Radiation-Hardened and Radiation-Tolerant Versions Enable a Spectrum of Mission Profiles

Compute

Groundbreaking **64-bit RISC-V**[©] **Vector** processing with virtualization targeting Edge AI (SiFive X288/X280)

Security

Defense Grade Security Enclave supporting **Post-Quantum** Cryptographic algorithms

Fault Tolerance

Unprecedented Fault-Tolerance capabilities for Mission Critical Applications (DCLS, Split-Mode, WorldGuard)

Massive Connectivity

Integrated **240G TSN Ethernet** Switch, **10GbE**, **PCIe**/CXL and **RDMA** for Networking & Deterministic Connectivity

Enables Fast & Efficient AI/ML at the Edge (of Space)

- Next-gen space missions require extensive autonomous capabilities with workloads that can significantly benefit from AI & ML acceleration
 - Vision processing, Hazard Avoidance, Situational Awareness, Spaceflight guidance, Data analysis, Navigation, etc.
- PIC64-HPSC leverages SiFive's proven X280 RISC-V processor cores with vector extension, optimized for AI/ML applications
 - Accelerates matrix multiplication for AI/ML operations
- Enabling the use of **industry standard** AI/ML tools and frameworks (TensorFlow Lite, OpenXLA, etc.)

Delivering Greater Autonomous Compute Capabilities

Microchip Proprietary and Confidential © 2024 Microchip Technology Inc. and its subsidiaries

Data Ingestion: PIC64-HPSC Delivers TSN Ethernet

PIC64-HPSC: TSN Ethernet Benefits for Space

Supports IEEE TSN for Aerospace Onboard Ethernet Communications

Microchip Proprietary and Confidential © 2024 Microchip Technology Inc. and its subsidiaries

Enables On-Board Computing (OBC) Extensibility

System Extensibility with Field Proven Industry Standard Connectivity

Microchip Proprietary and Confidential © 2024 Microchip Technology Inc. and its subsidiaries

Enable Applications with Mixed-Criticality

Mission-Critical Workload

Terrain Relative Navigation Hazard Avoidance Command and Control Certified Software Lockstep Operation Trusted Execution Environment

Less-Critical Workload

Science missions Sample collection and analysis High performance computing Experimental software

Flexible Application Cores Partitioning, Virtualization & WorldGuard Hypervisor support, Cache Isolation, Complete isolation and fault containment, Prohibited resource sharing

MICROCHIP

PIC64

PIC64-HPSC Design Philosophies

Industry Standard & Proven Technologies

- Ethernet
- TSN
- RDMA, RoCEv2
- PCle[®]
- Etc.

- Hardening
- Performance
- Power

Open-Standard Open-Source

- RISC-V[®] ISA
- Hypervisor
- Software Tools and Libraries

Considerations when making tough choices

- Radiation Tolerance:
- Compute Performance:
- Power Consumption:

critical yet least flexibility

- peak performance is "baked in"
- tunable against performance/features

HPSC – From Low-Earth Orbiting to Deep Space

PIC64-HPSC Series: Radiation-Hardened and Radiation-Tolerant Variants for Spectrum of Missions

Common Footprint & Software to Enable Scalable Assurance

Microchip Proprietary and Confidential © 2024 Microchip Technology Inc. and its subsidiaries

*tested to 200 krad

Supporting Open Source & Commercial Software

Extensive Development Tools, Libraries and Operating Systems for PIC64-HPSC Series

Microchip Uniquely Enables System Solution

Expansive Portfolio Provides Complete Validated Design to Accelerate Time to Market

Typical Single Board Computer (SBC) Reference Design

Enabling the Space SBC Ecosystem

Single Board Computer (SBC) Partners To Fully Address Customer Development Needs

Innovative Computing Element "ICE"

- ICE program is currently under evaluation in ESA & ASI. No formal approval yet
- ICE is proposing to use Microchip's HPSC with Neat's GeminiX-S Operating System
- ICE will be used to implement Radiation Tolerant High Performances, High bandwidth class of computers to address autonomous Al based applications.
- GeminiX-S Operating System is a generic low-level SW that implements a real time OS-like environment. Main characteristics are:
 - 100% Neat's in-house development. MISRA C 2012, with coding rules
 - SW Defensive Programming (assertion, data check before use, ...)
 - Controlled execution flow (token passing)
 - 64 bit code protection of firmware on Mass Memory (CBC-MAC) for each 1 Kbyte block of data.
 - Stand-alone self-booting executable
 - Configurable isochronous interrupt service (resolution depending on specific timer technology)
 - High coverage diagnostic routine for on-line testing of:
 - CPU (registers, ISA, stack, internal RAM if available)
 - Memories (RAM, Mass Memory)
 - Data path (HW assisted BUS test)

g<mark>e</mark>minix

1

New products Announcements

PIC64-HPSC

Microchip Unveils Industry's Highest Performance 64-bit HPSC Microprocessor (MPU) Family for a New Era of Autonomous Space Computing

JANxx Transistors

Microchip Adds Military-Standard Enhanced Low Dose Radiation Sensitivity (ELDRS) Qualification to Its Portfolio of Small-Signal Bipolar Junction Transistors to Ensure High Reliability for Critical Applications

SAMD21RT

Microchip Expands its Radiation-Tolerant Microcontroller Portfolio with the 32-bit SAMD21RT Arm[®] Cortex[®]-M0+ Based MCU for the Aerospace and Defense Market

LE50-28

Radiation-Tolerant DC-DC 50-Watt Power Converters Provide High-Reliability Solution for New Space Applications

RT PolarFire® system-on-chip (SoC) FPGA

Radiation-Tolerant PolarFire[®] SoC FPGAs Offer Low Power, Zero Configuration Upsets, RISC-V[®] Architecture for Space Applications

New integrated actuation power solution

Integrated Actuation Power Solution Aims to Simplify Aviation Industry's Transition to More Electric Aircraft

PIC64-HPSC: Arriving in H1 2025

Where to learn more...

- Web pages to access Link
 - Products, applications
 - Reference designs on product pages
 - **Brochures**
 - Newsletters
- A&D BDM's, Sales teams
- nicolas.ganry@microchip.com

Design Smarter, More Efficient Aerospace and Defense Applications Using Our High-Reliability Products and Solutions

tem solutions through a range of high-reliability products using a scalable approach when possible. In addition, we have a dedicated aerospace and defense team

is a keystone: our products are qualified to the most stringent standards in the industry including AEC-Q100, GEIA-STD-0002-1 Aerospace Qualified Electroni (AOEC) MIL-S-19500 (IANY) MIL-PRE 38535 and ESCC9000

you can take advantage of the extended temperature qualification from -55°C to 125°C and radiation hardening to the highest level, including neutrons, We can

press is a key differentiator, and we can give you access to full traceability. We also implement specific test screening when necessar

upplying products long term and providing excellent customer suppo

Browse Applications

Space

TSN For Space Whitepaper (Microchip)

NASA **HPSC Whitepaper**

Securing Space Infrastructure Whitepaper (Microchip)

Thank You

aviation-defense subscription

space-brief subscription

